Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium

نویسندگان

  • Vera Troselj
  • Anke Treuner-Lange
  • Lotte Søgaard-Andersen
  • Daniel Wall
چکیده

A hallmark of social microorganisms is their ability to engage in complex and coordinated behaviors that depend on cooperative and synchronized actions among many cells. For instance, myxobacteria use an aggregation strategy to form multicellular, spore-filled fruiting bodies in response to starvation. One barrier to the synchronization process is physiological heterogeneity within clonal populations. How myxobacteria cope with these physiological differences is poorly understood. Here, we investigated the interactions between closely related but physiologically distinct Myxococcus xanthus populations. We used a genetic approach to create amino acid auxotrophs and tested how they interact with a parental prototroph strain. Importantly, we found that auxotrophs were killed by their prototroph siblings when the former were starved for amino acids but not when grown on rich medium or when both strains were starved. This antagonism depended on the type VI secretion system (T6SS) as well as gliding motility; in particular, we identified the effector-immunity pair (TsxEI) as the mediator of this killing. This sibling antagonism resulted from lower levels of the TsxI immunity protein in the starved population. Thus, when starving auxotrophs were mixed with nonstarving prototrophs, the auxotrophs were susceptible to intoxication by the TsxE effector delivered by the T6SS from the prototrophs. Furthermore, our results suggested that homogeneously starving populations have reduced T6SS activity and, therefore, do not antagonize each other. We conclude that heterogeneous populations of M. xanthus use T6SS-dependent killing to eliminate starving or less-fit cells, thus facilitating the attainment of homeostasis within a population and the synchronization of behaviors.IMPORTANCE Social bacteria employ elaborate strategies to adapt to environmental challenges. One means to prepare for unpredictable changes is for clonal populations to contain individuals with diverse physiological states. These subpopulations will differentially respond to new environmental conditions, ensuring that some cells will better adapt. However, for social bacteria physiological heterogeneity may impede the ability of a clonal population to synchronize their behaviors. By using a highly cooperative and synchronizable model organism, M. xanthus, we asked how physiological differences between interacting siblings impacted their collective behaviors. Physiological heterogeneity was experimentally designed such that one population starved while the other grew when mixed. We found that these differences led to social conflict where more-fit individuals killed their less-fit siblings. For the first time, we report that the T6SS nanoweapon mediates antagonism between siblings, resulting in myxobacterial populations becoming more synchronized to conduct social behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erwinia chrysanthemi type III secretion system is required for multicellular behavior.

Enterobacterial animal pathogens exhibit aggregative multicellular behavior, which is manifested as pellicles on the culture surface and biofilms at the surface-liquid-air interface. Pellicle formation behavior requires production of extracellular polysaccharide, cellulose, and protein filaments, known as curli. Protein filaments analogous to curli are formed by many protein secretion systems, ...

متن کامل

Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta

The type VI secretion system (T6SS) is a widespread molecular weapon deployed by many Proteobacteria to target effectors/toxins into both eukaryotic and prokaryotic cells. We report that Agrobacterium tumefaciens, a soil bacterium that triggers tumorigenesis in plants, produces a family of type VI DNase effectors (Tde) that are distinct from previously known polymorphic toxins and nucleases. Td...

متن کامل

Unique Biofilm Signature, Drug Susceptibility and Decreased Virulence in Drosophila through the Pseudomonas aeruginosa Two-Component System PprAB

Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lif...

متن کامل

Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa

The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co...

متن کامل

Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium.

Type VI secretion systems (T6SSs) are major virulence mechanisms in many Gram-negative bacteria, but the physiological signals that activate them are not well understood. The T6SS1 of Burkholderia pseudomallei is essential for pathogenesis in mammalian hosts and is only expressed when the bacterium is intracellular. We found that signals for T6SS1 activation reside in the host cytosol. Through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018